Bacteria turn themselves into living electric grids by sending currents down mineral wires

n the planet’s soils and sediments, there are giant electrical grids made of rocks and microbes.

Throughout the last decade, scientists have shown that bacteria can transfer electrons between one another to produce electric currents. Some of them do so with hair-like extensions called pili, which act as tiny electric wires. Now, we know that some can use iron minerals to transfer electrons instead.

All living things rely on relays of electrons. In our cells, proteins strip electrons from food and pass them along to one another, eventually depositing them onto oxygen. This releases the energy that fuels our existence. In animals and plants, these electron transfer chains are restricted to individual cells. But in bacteria, the chains encompass many cells, even

DON'T MISS THE REST OF THIS STORY!
Create a free account to continue and get unlimited access to hundreds of Nat Geo articles, plus newsletters.

Create your free account to continue reading

No credit card required. Unlimited access to free content.
Or get a Premium Subscription to access the best of Nat Geo - just $19
SUBSCRIBE

Go Further

Subscriber Exclusive Content

Why are people so dang obsessed with Mars?

How viruses shape our world

The era of greyhound racing in the U.S. is coming to an end

See how people have imagined life on Mars through history

See how NASA’s new Mars rover will explore the red planet

Why are people so dang obsessed with Mars?

How viruses shape our world

The era of greyhound racing in the U.S. is coming to an end

See how people have imagined life on Mars through history

See how NASA’s new Mars rover will explore the red planet

Why are people so dang obsessed with Mars?

How viruses shape our world

The era of greyhound racing in the U.S. is coming to an end

See how people have imagined life on Mars through history

See how NASA’s new Mars rover will explore the red planet