Need to feed could have driven single cells to evolve into colonies

Most life on this planet goes about their business as single cells. Only rarely do these singletons unite in cooperative societies, creating bigger and more complex living things, from trees to humans. This transition from single-celled to ‘multicellular’ life is one of the most important transitions in the evolution of life on Earth and it has happened many times over.

There are two main routes to a multicellular life. Single cells can merge together, and some modern species recap how this might have happened. Individual slime moulds join to form mobile slugs, while myxobacteria can merge into predatory swarms. Alternatively, cells can multiply but remain attached, staying united in their division. The choanoflagellates, possibly the closest living relatives of

DON'T MISS THE REST OF THIS STORY!
Create a free account to continue and get unlimited access to hundreds of Nat Geo articles, plus newsletters.

Create your free account to continue reading

No credit card required. Unlimited access to free content.
Or get a Premium Subscription to access the best of Nat Geo - just $19
SUBSCRIBE

Go Further

Subscriber Exclusive Content

Why are people so dang obsessed with Mars?

How viruses shape our world

The era of greyhound racing in the U.S. is coming to an end

See how people have imagined life on Mars through history

See how NASA’s new Mars rover will explore the red planet

Why are people so dang obsessed with Mars?

How viruses shape our world

The era of greyhound racing in the U.S. is coming to an end

See how people have imagined life on Mars through history

See how NASA’s new Mars rover will explore the red planet

Why are people so dang obsessed with Mars?

How viruses shape our world

The era of greyhound racing in the U.S. is coming to an end

See how people have imagined life on Mars through history

See how NASA’s new Mars rover will explore the red planet