"No Two Snowflakes the Same" Likely True, Research Reveals

Snowflakes form when water vapor condenses around specks of dust high in the clouds.

More than ten feet (three meters) of snow fell last week in parts of upstate New York, and more is forecast for the U.S. Northeast in the coming days.

In all that snow, however, scientists believe the chance that any two flakes are exactly alike is virtually zero.

Why?

The answer, according to New York-based writer Mariana Gosnell, is in the way snowflakes form and fall to Earth. The process is detailed in her book Ice: the Nature, the History, and the Uses of an Astonishing Substance.

A snowflake begins to form when water vapor condenses around a speck of dust high in the clouds—up to six miles (ten kilometers) up—and then crystallizes.

How the water vapor keeps on condensing and where the snowflake falls

DON'T MISS THE REST OF THIS STORY!
Create a free account to continue and get unlimited access to hundreds of Nat Geo articles, plus newsletters.

Create your free account to continue reading

No credit card required. Unlimited access to free content.
Or get a Premium Subscription to access the best of Nat Geo - just $19
SUBSCRIBE

Read This Next

AI can help you plan your next trip—if you know how to ask.
Did this mysterious human relative bury its dead?
This new birth control for cats doesn't require surgery

Go Further

Subscriber Exclusive Content

Why are people so dang obsessed with Mars?

How viruses shape our world

The era of greyhound racing in the U.S. is coming to an end

See how people have imagined life on Mars through history

See how NASA’s new Mars rover will explore the red planet

Why are people so dang obsessed with Mars?

How viruses shape our world

The era of greyhound racing in the U.S. is coming to an end

See how people have imagined life on Mars through history

See how NASA’s new Mars rover will explore the red planet

Why are people so dang obsessed with Mars?

How viruses shape our world

The era of greyhound racing in the U.S. is coming to an end

See how people have imagined life on Mars through history

See how NASA’s new Mars rover will explore the red planet