arrow-downarrow-leftarrow-rightarrow-upchevron-upchevron-leftchevron-rightchevron-upclosecomment-newemail-newfullscreen-closefullscreen-opengallerygridheadphones-newheart-filledheart-openmap-geolocatormap-pushpinArtboard 1Artboard 1Artboard 1minusng-borderpauseplayplusprintreplayscreensharefacebookgithubArtboard 1Artboard 1linkedinlinkedin_inpinterestpinterest_psnapchatsnapchat_2tumblrtwittervimeovinewhatsappspeakerstar-filledstar-openzoom-in-newzoom-out-new

Neutron Stars

Learn about the incomprehensible density of neutron stars.

View Images

Latest News

Neutron stars can have a resounding impact around the universe. Scientists recently announced the first detection of gravitational waves created by two neutron stars smashing into each other.

Gravitational Waves 101 What are gravitational waves and how are they detected? These ripples in space-time, sometimes caused by neutron stars colliding, were recently recorded in the groundbreaking LIGO-Virgo observation.

About Neutron Stars

Neutron stars are ancient remnants of stars that have reached the end of their evolutionary journey through space and time.

These interesting objects are born from once-large stars that grew to four to eight times the size of our own sun before exploding in catastrophic supernovae. After one such explosion blows a star's outer layers into space, the core remains—but it no longer produces nuclear fusion. With no outward pressure from fusion to counterbalance gravity's inward pull, the star condenses and collapses in upon itself.

Small but Mighty

Despite their small diameters—about 12.5 miles (20 kilometers)—neutron stars boast nearly 1.5 times the mass of our sun, and are thus incredibly dense. Just a sugar cube of neutron star matter would weigh about one hundred million tons on Earth.

A neutron star's almost incomprehensible density causes protons and electrons to combine into neutrons—the process that gives such stars their name. The composition of their cores is unknown, but they may consist of a neutron superfluid or some unknown state of matter.

Neutron stars pack an extremely strong gravitational pull, much greater than Earth's. This gravitational strength is particularly impressive because of the stars' small size.

When they are formed, neutron stars rotate in space. As they compress and shrink, this spinning speeds up because of the conservation of angular momentum—the same principle that causes a spinning skater to speed up when she pulls in her arms.

Pulsing Lights

These stars gradually slow down over the eons, but those bodies that are still spinning rapidly may emit radiation that from Earth appears to blink on and off as the star spins, like the beam of light from a turning lighthouse. This "pulsing" appearance gives some neutron stars the name pulsars.

After spinning for several million years pulsars are drained of their energy and become normal neutron stars. Few of the known existing neutron stars are pulsars. Only about 1,000 pulsars are known to exist, though there may be hundreds of millions of old neutron stars in the galaxy.

The staggering pressures that exist at the core of neutron stars may be like those that existed at the time of the big bang, but these states cannot be simulated on Earth.