arrow-downarrow-leftarrow-rightarrow-upchevron-upchevron-leftchevron-rightchevron-upclosecomment-newemail-newgallerygridheadphones-newheart-filledheart-openmap-geolocatormap-pushpinArtboard 1Artboard 1Artboard 1minusng-borderpauseplayplusreplayscreenArtboard 1sharefacebookgithubArtboard 1Artboard 1linkedinlinkedin_inpinterestpinterest_psnapchatsnapchat_2tumblrtwittervimeovinewhatsappspeakerstar-filledstar-openzoom-in-newzoom-out-new



Biofuels offer plant-based solutions to the Earth's growing energy problems.

View Images

The Swedish city of Kristianstad uses biogas to generate electricity and heat and to fuel cars and municipal garbage trucks and buses. Its two refineries produce enough biofuel to replace 1.1 million gallons of gasoline each year.

Biofuels have been around as long as cars have. At the start of the 20th century, Henry Ford planned to fuel his Model Ts with ethanol, and early diesel engines were shown to run on peanut oil.

But discoveries of huge petroleum deposits kept gasoline and diesel cheap for decades, and biofuels were largely forgotten. However, with the recent rise in oil prices, along with growing concern about global warming caused by carbon dioxide emissions, biofuels have been regaining popularity.

Gasoline and diesel are actually ancient biofuels. But they are known as fossil fuels because they are made from decomposed plants and animals that have been buried in the ground for millions of years. Biofuels are similar, except that they're made from plants grown today.

Much of the gasoline in the United States is blended with a biofuel—ethanol. This is the same stuff as in alcoholic drinks, except that it's made from corn that has been heavily processed. There are various ways of making biofuels, but they generally use chemical reactions, fermentation, and heat to break down the starches, sugars, and other molecules in plants. The leftover products are then refined to produce a fuel that cars can use.

Countries around the world are using various kinds of biofuels. For decades, Brazil has turned sugarcane into ethanol, and some cars there can run on pure ethanol rather than as additive to fossil fuels. And biodiesel—a diesel-like fuel commonly made from palm oil—is generally available in Europe.

On the face of it, biofuels look like a great solution. Cars are a major source of atmospheric carbon dioxide, the main greenhouse gas that causes global warming. But since plants absorb carbon dioxide as they grow, crops grown for biofuels should suck up about as much carbon dioxide as comes out of the tailpipes of cars that burn these fuels. And unlike underground oil reserves, biofuels are a renewable resource since we can always grow more crops to turn into fuel.

Using biofuels as jetfuel also offers a solution to carbon emissions from air travel. In 2016, United Airlines announced a new iniative to integrate biofuel into its energy supply with the hopes of reducing greenhouse gas emissions by 60 percent. Because commercial air travel comprises a significant amount of all carbon dioxide emissions, airlines and environmental advocates readily seek alternative fuel sources.

Pitfalls of biofuels

Unfortunately, it's not so simple. The process of growing the crops, making fertilizers and pesticides, and processing the plants into fuel consumes a lot of energy. It's so much energy that there is debate about whether ethanol from corn actually provides more energy than is required to grow and process it. Also, because much of the energy used in production comes from coal and natural gas, biofuels don't replace as much oil as they use.

Biofuels have also become a point of contention for conservation groups that argue crops would go to better use as a source of food rather than fuel. Famed primatologist Jane Goodall has gone so far as to warn that harvesting sugarcane and oil palms for biofuels would have devastating effects on rainforests.

For the future, many think a better way of making biofuels will be from grasses and saplings, which contain more cellulose. Cellulose is the tough material that makes up plants' cell walls, and most of the weight of a plant is cellulose. If cellulose can be turned into biofuel, it could be more efficient than current biofuels, and emit less carbon dioxide.

Comment on This Story