<p><strong>January 8, 2010—</strong>One of the first two "fossil" fireballs ever detected glows deep in the supernova remnant W49B, according to a new study based on data from the <a id="n2qg" title="Japan-U.S. Suzaku observatory" href="http://www.nasa.gov/mission_pages/astro-e2/main/index.html">Japan-U.S. Suzaku x-ray observatory</a>. In the composite picture above, red and green represent infrared images of the remnant taken by ground-based telescopes, while blue shows x-ray data from NASA's Chandra X-ray Observatory. <br><br>W49B, which sits 35,000 light-years from Earth, is the glowing cloud of gas and dust left behind by the death of a massive star. As such stars age, they shed their outer layers, forming cocoons of gas and dust around dense cores. When the core explodes, it's believed that the initial blast wave can heat the cocoon to temperatures as high as 100 million degrees Fahrenheit (55 million degrees Celsius)—10,000 times hotter than the surface of the sun. <br><br>The debris then quickly thins and cools as it expands, creating a supernova remnant. Suzaku's highly sensitive x-ray vision allowed astronomers to spot the embers of the high-temperature inferno within that remnant, which immediately followed the blast that created W49B.<br><br>Suzaku's data revealed a region in the heart of the remnant in which iron atoms have been almost completely stripped of their electrons. For this to have happened, temperatures in the region must have been more than 55 million degrees Fahrenheit (30.5 million degrees Celsius)—about twice as hot as the remnant appears today.<br><br><em>—</em><em>Victoria Jaggard</em></p>

Supernova Remnant W49B

January 8, 2010—One of the first two "fossil" fireballs ever detected glows deep in the supernova remnant W49B, according to a new study based on data from the Japan-U.S. Suzaku x-ray observatory. In the composite picture above, red and green represent infrared images of the remnant taken by ground-based telescopes, while blue shows x-ray data from NASA's Chandra X-ray Observatory.

W49B, which sits 35,000 light-years from Earth, is the glowing cloud of gas and dust left behind by the death of a massive star. As such stars age, they shed their outer layers, forming cocoons of gas and dust around dense cores. When the core explodes, it's believed that the initial blast wave can heat the cocoon to temperatures as high as 100 million degrees Fahrenheit (55 million degrees Celsius)—10,000 times hotter than the surface of the sun.

The debris then quickly thins and cools as it expands, creating a supernova remnant. Suzaku's highly sensitive x-ray vision allowed astronomers to spot the embers of the high-temperature inferno within that remnant, which immediately followed the blast that created W49B.

Suzaku's data revealed a region in the heart of the remnant in which iron atoms have been almost completely stripped of their electrons. For this to have happened, temperatures in the region must have been more than 55 million degrees Fahrenheit (30.5 million degrees Celsius)—about twice as hot as the remnant appears today.

Victoria Jaggard

Image courtesy JAXA/NASA/Suzaku, Tom Bash, and John Fox/Adam Block, NOAO/AURA/NSF

PHOTOS: "Fossil" Fireballs Found in Supernova Debris

New x-ray pictures from the Suzaku space telescope have revealed the embers of high-temperature infernos that immediately followed the explosive deaths of two massive stars, astronomers say.

Read This Next

An ambitious new Florida trail links two U.S. national parks
How reading the night sky helped Black Americans survive
Does a woman’s fertility really plummet at age 35?

Go Further

Subscriber Exclusive Content

Why are people so dang obsessed with Mars?

How viruses shape our world

The era of greyhound racing in the U.S. is coming to an end

See how people have imagined life on Mars through history

See how NASA’s new Mars rover will explore the red planet

Why are people so dang obsessed with Mars?

How viruses shape our world

The era of greyhound racing in the U.S. is coming to an end

See how people have imagined life on Mars through history

See how NASA’s new Mars rover will explore the red planet

Why are people so dang obsessed with Mars?

How viruses shape our world

The era of greyhound racing in the U.S. is coming to an end

See how people have imagined life on Mars through history

See how NASA’s new Mars rover will explore the red planet